Preconditioned iterative methods for Navier-Stokes control problems
نویسنده
چکیده
PDE-constrained optimization problems are a class of problems which have attracted much recent attention in scientific computing and applied science. In this paper, we discuss preconditioned iterative methods for a class of Navier-Stokes control problems, one of the main problems of this type in the field of fluid dynamics. Having detailed the Oseen-type iteration we use to solve the problems and derived the structure of the matrix system to be solved at each step, we utilize the theory of saddle point systems to develop efficient preconditioned iterative solution techniques for these problems. We also require theory of solving convection-diffusion control problems, as well as a commutator argument to justify one of the components of the preconditioner.
منابع مشابه
Evaluation of Preconditioned Krylov Subspace Methods for Navier-stokes Equations
The purpose of this work is to compare the performance of some preconditioned iterative methods for solving the linear systems of equations, formed at each time-integration step of two-dimensional incompressible NavierStokes equations of fluid flow. The Navier-Stokes equations are discretized in an implicit and upwind control volume formulation. The iterative methods used in this paper include ...
متن کاملAn Alternative HSS Preconditioner for the Unsteady Incompressible Navier-Stokes Equations in Rotation Form
We study the preconditioned iterative method for the unsteady Navier-Stokes equations. The rotation form of the Oseen system is considered. We apply an efficient preconditioner which is derived from the Hermitian/Skew-Hermitian preconditioner to the Krylov subspace-iterative method. Numerical experiments show the robustness of the preconditioned iterative methods with respect to the mesh size, ...
متن کاملUsing Python to Solve the Navier-Stokes Equations - Applications in the Preconditioned Iterative Methods
This article describes a new numerical solver for the Navier-Stokes equations. The proposed solver is written in Python which is a newly developed language. The Python packages are built to solve the Navier-Stokes equations with existing libraries. We have created discretized coefficient matrices from systems of the Navier-Stokes equations by the finite difference method. In addition we focus o...
متن کاملAn Investigation into Preconditioning Iterative Solvers for Hydrodynamic Problems
Two Krylov subspace iterative methods, GMRES and QMR, were studied in conjunction with several preconditioning techniques for solving the linear system raised from the finite element discretisation of incompressible Navier-Stokes equations for hydrodynamic problems. The preconditioning methods under investigation were the incomplete factorisation methods such as ILU(0) and MILU, the Stokes prec...
متن کاملA Comparative Study of Block Preconditioners for Incompressible Flow Problems
Problem statement: We consider the numerical solvers for the linearized Navier-Stokes problem. Both the Stokes problem and Oseen problems are considered. Approach: We used the Mark and Cell (MAC) discretization method to discretize the Navier-Stokes equations. We used preconditioned Krylov subspace methods to solve the resulting linear systems. Results: Numerical experimental results are perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 292 شماره
صفحات -
تاریخ انتشار 2015